Structures of Two Nucleoside Analogues: 1-[(2R,6R)-6-Hydroxymethyl-1,4-dioxan-2yl]uracil and 5-Bromo-1-[(2R,6R)-6-hydroxymethyl-1,4-dioxan-2-yl]uracil*

By H. L. De Winter, N. M. Blaton, O. M. Peeters and C. J. De Ranter \dagger
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

and A. Van Aerschot and P. Herdewinn
Laboratorium voor Farmaceutische Chemie, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

(Received 15 March 1991; accepted 29 May 1991)

Abstract

I) 1-[(2R,6R)-6-Hydroxymethyl-1,4-di-oxan-2-yl]uracil, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}, M_{r}=228 \cdot 20$, trigonal, $P 3_{1} 21, \quad a=9.438(5), \quad c=19.77$ (2) $\AA, \quad V=$ 1522 (2) $\AA^{3}, Z=6, D_{m}=1 \cdot 49, D_{x}=1 \cdot 494 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \mu=0.115 \mathrm{~mm}^{-1}, F(000)=$ $720, T=293 \mathrm{~K}$, final $R=0.036$ for 1541 unique observed [$F \geq 4 \sigma(F)$] reflections. (II) 5-Bromo-1[($2 R, 6 R$)-6-hydroxymethyl-1,4-dioxan-2-yl]uracil, C_{9} $\mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{5}, M_{r}=307 \cdot 10$, triclinic, $P 1, a=4 \cdot 851$ (4), $b=6.409(5), \quad c=9.687(9) \AA, \quad \alpha=70.78$ (7), $\quad \beta=$ 83.54 (7), $\gamma=80.01$ (6) ${ }^{\circ}, V=279.5$ (4) $\AA^{3}, Z=1, D_{m}$ $=1.82, D_{x}=1.824 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мо $K \alpha)=0.71069 \AA$, $\mu=3.649 \mathrm{~mm}^{-1}, F(000)=154, T=293 \mathrm{~K}$, final R $=0.036$ for 959 unique observed reflections $[F \geq$ $4 \sigma(F)]$. Except for N -glycosidic torsion angle, which is 230.9 (2) ${ }^{\circ}$ for (I) and 210.2 (7) ${ }^{\circ}$ for (II), the two molecules are conformationally very similar. No intramolecular hydrogen bonds are observed. The crystal packings are stabilized by intermolecular hydrogen bonds and base-stacking forces.

Experimental. The synthesis has been described by Van Aerschot, Janssen \& Herdewijn (1990). Crystals of compound (I) from acetone/hexane; of compound (II) from ethanol/amyl acetate. Density measured by flotation in (I) n-heptane/ CCl_{4} and in (II) $1,1,2,2-$ tetrabromoethane/ CCl_{4}. Space group of (I) determined from systematically absent reflections $00 l$ with $3 n$ odd and from careful inspection of the intensities of five reflections with the intensities of their Laue-related equivalents. Experimental details are set out in Table 1. Stoe Stadi-4 computer-

[^0]controlled diffractometer, cell constants by leastsquares refinement of the setting angles of 36 (I) or 34 (II) reflections with $20 \leq 2 \theta \leq 30^{\circ}$. Intensities of two standard reflections monitored every 2 h showed for (I) a decrease of 8.8% (after 130 h) for which the intensities have been corrected and for (II) only statistical fluctuations. Data reduction with a locally modified version of Stoe \& Co (1985) REDU4 program, Lorentz and polarization corrections. Equivalent reflections of compound (I) were averaged with the program SDP (Frenz, 1985). Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B) and for H atoms from Stewart, Davidson \& Simpson (1965). Anomalous-dispersion corrections were included for all non-H atoms (Ibers \& Hamilton, 1964). No absorption corrections were applied. Structure (I) solved by MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982), while structure (II) was solved by a Fourier synthesis with phases from $\operatorname{Br}(5)$, which was placed at an arbitrary position. Refined on F by full-matrix least squares, first with isotropic temperature factors and finally anisotropically. In both structures, all H atoms were found in a difference synthesis and in compound (I) their positional parameters were refined with a fixed temperature factor $B, 1.3$ times the B_{eq} of their parent atoms. In compound (II), which contains the heavy-atom Br , all H but $\mathrm{H}(1)$ were placed at a riding distance of $0.95 \AA$ with a fixed temperature factor $B, 1.3$ times the $B_{\text {eq }}$ of their parent atoms. $H(1)$ was placed at its found position and included in the refinement with a fixed temperature factor $B, 1 \cdot 3$ times the $B_{\text {eq }}$ of $\mathrm{O}\left(55^{\prime}\right)$. All calculations were performed on Digital PDP-11/73 and MicroVAX 2000 microcomputers using $S D P$ (Frenz, 1985) and PARST (Nardelli, 1983).

Table 1. Experimental data

Crystal shape and
dimensions (mm)
Space group
Lattice parameters
No. of reflections 2θ range (${ }^{\circ}$) Scan technique Maximum $2 \theta\left({ }^{\circ}\right)$ $h k l$ range

Standard reflections
No. of measured reflections
No. of unique reflections
No. of unique reflections with $[F \geq 4 \sigma(F)]$
R_{mt} on F for equivalent observed reflections
$R, u^{\prime} R$
Goodness-of-fit S
Weighting scheme
Max. shift/e.s.d.
Min. and max. residual electron density (e \AA^{-3})
No. of refined parameters No. of reflections per refined parameter
Absorption coefficient $\mu\left(\mathrm{mm}^{-1}\right)$

Compound (I)	Compound (II)
Irregular	Needle
$0.6 \times 0.6 \times 0.3$	$0.5 \times 0.2 \times 0.1$
P3,21	Pl
36	34
$20 \leq 2 \theta \leq 30$	$20 \leq 2 \theta \leq 30$
$\omega / 2 \theta$	$\omega / 2 \theta$
65	50
$-14 \leq h \leq 14$	$-5 \leq h \leq 0$
$-14 \leq k \leq 0$	$-7 \leq k \leq 7$
$-30 \leq l \leq 0$	$-11 \leq l \leq 11$
120, 113	002, 020
5939	1120
2144	983
1541	959
0.019	-
0.036, 0.039	0.036, 0.050
2.27	1.95
$1 /\left(\sigma_{F}^{2}+3 \times 10^{-5} F_{o}^{2}\right)$	$1 /\left(\sigma_{F}^{2}+4 \times 10^{-4} F_{o}^{2}\right)$
0.05	0.01
$-0.31,+0.16$	$-0.65,+0.62$ (near Br)
181	154
8.5	$6 \cdot 2$
0.115	3.649

(a)

(b)

Fig. 1. PLUTO (Motherwell \& Clegg, 1978) plots of the title compounds with atomic numbering schemes. (a) Compound (I). (b) Compound (II).

Table 2. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{e q}$
Compound (I)				
N1	0.3110 (2)	$0 \cdot 2593$ (2)	$0 \cdot 40928$ (8)	378 (5)
C2	0.3513 (2)	0.1404 (2)	0.42453 (9)	429 (5)
O2	0.4920 (1)	$0 \cdot 1691$ (2)	0.43038 (7)	537 (5)
N3	0.2194 (2)	-0.0145 (2)	$0 \cdot 43155$ (8)	448 (5)
C4	0.0540 (2)	-0.0618 (2)	$0 \cdot 42813$ (9)	450 (6)
O4	-0.0502 (2)	-0.2045 (2)	0.43771 (8)	560 (6)
C5	0.0246 (2)	0.0701 (2)	0.4132 (1)	428 (6)
C6	0.1503 (2)	0.2221 (2)	$0 \cdot 40453$ (9)	427 (6)
Cl^{\prime}	$0 \cdot 4411$ (2)	0.4277 (2)	$0 \cdot 3980$ (1)	387 (6)
C2'	0.4470 (2)	$0 \cdot 4744$ (3)	0.3242 (1)	524 (8)
O3'	0.5647 (2)	$0 \cdot 6430$ (2)	0.31540 (8)	533 (6)
C4'	0.5236 (3)	0.7409 (3)	0.3567 (1)	467 (8)
C5'	0.5192 (2)	0.6983 (2)	0.4303 (1)	398 (6)
O5'	$0 \cdot 4043$ (2)	0.5265 (1)	0.44000 (6)	389 (4)
C55	0.4649 (2)	0.7905 (2)	0.4764 (1)	520 (7)
O55'	$0 \cdot 2972$ (2)	0.7423 (2)	0.46658 (8)	529 (5)
Compound (II)				
N1	0.511 (2)	0.513 (1)	0.3658 (7)	310 (19)
C2	0.456 (1)	0.488 (1)	0.2358 (7)	282 (25)
O2	0.303 (1)	0.361 (1)	0.2314 (6)	421 (17)
N3	0.591 (2)	0.615 (1)	0.1149 (6)	344 (19)
C4	0.765 (2)	0.765 (1)	$0 \cdot 1070$ (8)	323 (23)
O4	0.875 (2)	0.865 (1)	-0.0090 (6)	450 (20)
C5	0.799 (2)	0.786 (1)	0.2474 (9)	333 (24)
Br5*	1.000	1.000	0.250	377 (2)
C6	0.678 (2)	0.663 (1)	0.3688 (8)	315 (24)
Cl^{\prime}	$0 \cdot 368$ (2)	0.383 (1)	0.4979 (8)	350 (24)
C2'	$0 \cdot 542$ (2)	0.155 (1)	0.5644 (9)	418 (26)
O3'	0.409 (2)	0.039 (1)	0.6956 (7)	488 (23)
C4'	$0 \cdot 380$ (2)	$0 \cdot 161$ (1)	0.7990 (9)	413 (28)
C5'	$0 \cdot 209$ (2)	0.387 (1)	0.7357 (8)	366 (25)
O5'	0.329 (1)	$0 \cdot 5050$ (9)	0.5956 (6)	359 (17)
C55	$0 \cdot 187$ (2)	0.535 (1)	0.8307 (9)	442 (27)
O55'	0.459 (1)	$0 \cdot 5879$ (9)	0.8430 (6)	416 (19)
* Parameters kept fixed during refinement.				

Discussion. The dioxane ring atoms have been labeled using primes and starting with the C atom to which the pyrimidine base is attached as is usual for pyranosyl sugars. A PLUTO view (Motherwell \& Clegg, 1978) of the title compounds with the atomic numbering scheme is shown in Fig. 1. The final atomic coordinates and equivalent isotropic thermal parameters are given in Table 2.* Bond lengths, bond angles and selected torsion angles are given in Table 3.

All bond lengths and bond angles are within the normal range (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987). Except for the $O\left(5^{\prime}\right)$ -$\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(2)$ torsion angle χ, which is 230.9 (2) ${ }^{\circ}$ in (I) and 210.2 (7) ${ }^{\circ}$ in (II) (both anti), the two molecules are essentially similar in conformation. Even the orientation of $\mathrm{O}\left(55^{\prime}\right)$ above the dioxane rings is comparable since both $\mathrm{O}\left(55^{\prime}\right)$ -$\mathrm{C}\left(55^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ torsional angles differ by only

[^1]Table 3. Bond lengths (\AA), bond angles (${ }^{\circ}$) and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses
$4(1)^{\circ}$. A fit on the dioxane and base ring atoms using BMFIT (Nyburg, 1974) showed very close geometric similarity between the two dioxane and pyrimidine rings (r.m.s. deviations are 0.017 and $0.021 \AA$ respectively).
In furanosyl nucleosides, the anti orientation around χ is often stabilized by an intramolecular hydrogen bond between $\mathrm{O}\left(5^{\prime}\right)$ and $\mathrm{H}-\mathrm{C}(6)$ (Saenger, 1988). However, in the title compounds the five-membered furanosyl sugar ring is replaced by a six-membered dioxane ring on which the pyrimidine base is equatorially placed and thus oriented away from $\mathrm{O}\left(55^{\prime}\right)$. Consequently, the distance between

Table 4. Geometry of intermolecular hydrogen bonds $\left(\AA,{ }^{\circ}\right)$ with e.s.d.'s in parentheses

$X-\mathrm{H} \cdots \mathrm{Y}$		$d(\mathrm{H} \cdots Y)$	$d(X \cdots Y)$	$X-\mathrm{H} \cdots \mathrm{Y}$
Compound (I)				
O55'- ${ }^{\prime} 1 \cdots \mathrm{O} 2$	(1)	1.98 (2)	2.884 (3)	157 (2)
N3-H10 \cdots H10	(2)	1.94 (3)	2.823 (3)	168 (2)
Equivalent positions: (1) $y, x, 1-z$; (2) $x, y-1, z$.				
Compound (II)				
O55'- $\mathrm{H}^{\prime} \cdots{ }^{\text {O }}{ }^{\prime}$	(1)	1.83	2.750 (8)	178
N3'-H10‥055	(2)	1.90	2.846 (10)	174

Equivalent positions: (1) $x, y+1, z$; (2) $x, y, z-1$.

(a)

(b)

Fig. 2. PLUTO (Motherwell \& Clegg, 1978) plots of the crystal packings. Thin lines indicate hydrogen bonds. (a) Compound (I). All hydrogens except $\mathrm{H}(1)$ and $\mathrm{H}(10)$ were omitted for reasons of clarity. (b) Compound (II).
$\mathrm{O}\left(55^{\prime}\right)$ and $\mathrm{H}-\mathrm{C}(6)$ [3.85 (2) in (I) and 3.655 (7) \AA in (II)] is considerably larger than in comparable furanosyl nucleosides, and prevents hydrogen-bond formation. Rigid rotation around the $\mathrm{C}\left(55^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ and the $\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)$ bonds of compound (I) reveals that when $\mathrm{O}\left(55^{\prime}\right)-\mathrm{C}\left(55^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)=115^{\circ}$ and $\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(2)=180^{\circ}$, the distance between $\mathrm{O}\left(55^{\prime}\right)$ and $\mathrm{H}(12)$ becomes the smallest
achievable but remains larger than $3.0 \AA$, still far too large to form a stable hydrogen bond.

Using the method of Cremer \& Pople (1975), we calculated almost equal phase angles $\varphi_{2}=-61$ (7) (I) or $-70(13)^{\circ}$ (II) and $\theta_{2}=177.7$ (2) (I) or $175.5(9)^{\circ}$ (II), with total puckering amplitudes $Q=$ 0.563 (2) (I) or 0.56 (1) \AA (II) for the sequences $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$.

The packing in both crystals is partly determined by hydrogen bonds involving atoms of the dioxane and base rings (Table 4 summarizes all the intermolecular hydrogen bonds) and partly by parallel base-stacking forces. PLUTO plots of the crystal packings are shown in Fig. 2. In structure (I), two different stacking patterns are observable: (1) the closest stacking [$d_{\text {mean }}=3.4$ (2) \AA] is found between pairs of bases related to each other by the twofold axis along i [bases A and B in Fig. 2(a); dihedral angle between the two bases $\left.=10 \cdot 80(1)^{\circ}\right]$; (2) the other pattern [$d_{\text {mean }}=3.6(2) \AA$] is found between bases which are related by the twofold axis lying along a or b [bases A and C in Fig. 2(a); dihedral angle $\left.=12.86(1)^{\circ}\right]$. The stacking patterns for both observations are similar: the rings are only partially overlapped and the carbonyl groups and the ring N atoms often form close contacts with adjacent bases while the C atoms are less involved. In structure (II) only $\operatorname{Br}(5)$ is positioned in close contact with the adjacent base and is located above the center of the ring $\left[d_{\text {mean }}=3.31\right.$ (1) \AA].

The authors thank J. P. Van Cuyck for his help in preparing the pictures.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
De Winter, H. L., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Van Aerschot, A. \& Herdewinn, P. (1991). Acta Cryst. C47, 2245-2247.
Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius Delft, The Netherlands.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Main, P., Fiske, S., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nyburg, S. C. (1974). Acta Cryst. B30, 253-254.
Saenger, W. (1988). Principles of Nucleic Acid Structure. New York: Springer-Verlag.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Stoe \& Co. (1985). REDU4. Data Reduction Program. Stoe \& Co., Darmstadt, Germany.
Van Aerschot, A., Janssen, G. \& Herdewinn, P. (1990). Bull. Soc. Chim. Belg. 99, 769-777.

Acta Cryst. (1991). C47, 2423-2425

Structure of the cis Isomer of a Six-Membered Phosphorus Phenylhydrazine Ring

By B. Wallis, Ch. Donath and M. Meisel
Institut für Anorganische Chemie, Rudower Chaussee 5, O-1199 Berlin, Germany

and J. Fuchs
Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstrasse 34-36, W-1000 Berlin 33, Germany
(Received 17 April 1991; accepted 29 May 1991)

Abstract

Bis(methylthio)-1,4-diphenyl-3,6-dithi-oxo-1,2,4,5-tetraaza- $3 \lambda^{5}, 6 \lambda^{5}$-diphosphorinane crystallizes with two solvent molecules of acetonitrile, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} .2 \mathrm{CH}_{3} \mathrm{CN}, \quad M_{r}=514 \cdot 64$, monoclinic, $C 2 / c, \quad a=12 \cdot 1 \mathrm{i} 8(8), \quad b=13 \cdot 452(10), \quad c=$ 15.608 (4) $\AA, \beta=98.22(4)^{\circ}, V=2518 \AA^{3}, Z=4, D_{x}$ $=1.353 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $4.64 \mathrm{~mm}^{-1}, F(000)=1072, T=293 \mathrm{~K}, R=0.038$ for 2513 unique observed reflections with $I \geq 2 \sigma(I)$. The

molecules of the title compound have point symmetry 2 . In accordance with the cis stereochemistry of the methylthio substituents the six-membered ring adopts a twist conformation; torsion angles PNNP $+67.87(3)$, NNPN $-45.81(3)$ and NPNN $-19.73(1)^{\circ}$.

Introduction. To extend our knowledge of the preparative potential of $\mathrm{py} \cdot \mathrm{PS}_{2} \mathrm{Cl}(1)(\mathrm{py}=$ pyridine $)$, the

[^0]: * Structural Studies on Modified Nucleosides. Part XIII. Part XII: De Winter, Blaton, Peeters, De Ranter, Van Aerschot \& Herdewijn (1991).
 \dagger To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles involving \mathbf{H} atoms, least-squares planes and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54287 (30 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

